Chapter 14 TEST: Acids and Bases

1. For the equilibrium that exists in an aqueous solution of nitrous acid (HNO_2 , a weak acid), the equilibrium constant expression is:

A)
$$K = \frac{[H^+][NO_2^-]}{[HNO_2]}$$

B)
$$K = \frac{[H^+][N^{3+}][\bigcirc^{2-}]^2}{[HNO_2]}$$

C)
$$K = [H^+][NO_2^-]$$

D)
$$K = \frac{[H^+]^2[NO_2^-]}{[HNO_2]}$$

- E) none of these
- 2. Which of the following is a conjugate acid/base pair?
 - A) HCl/OCl
 - B) H₂SO₄/SO₄²⁻
 - C) NH_4^+/NH_3
 - D) H₃O⁺/OH⁻
 - E) more than one of these
- 3. The hydrogen sulfate or bisulfate ion HSO_4^- can act as either an acid or a base in water solution. In which of the following equations does HSO_4^- act as an acid?

A)
$$HSO_4^- + H_2O \rightarrow H_2SO_4 + OH^-$$

B)
$$HSO_4^- + H_3O^+ \rightarrow SO_3 + 2H_2O$$

C)
$$HSO_4^- + OH^- \rightarrow H_2SO_4 + O^{2-}$$

D)
$$HSO_4^- + H_2O \rightarrow SO_4^{2-} + H_3O^+$$

- E) none of these
- 4. Which of the following is the equilibrium constant expression for the dissociation of the weak acid HOCl?

A)
$$K = \frac{[H^+][OCl^-]}{[HOCl]}$$

B)
$$K = [H^+][OCl^-]$$

C)
$$K = \frac{\text{[HOC1]}}{\text{[H^+][OC1^-]}}$$

D)
$$K = \frac{[H^+][O^{2-}][Cl^-]}{[HOCl]}$$

E) none of these

- 5. Consider the reaction $HNO_2(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + NO_2^-(aq)$. Which species is a conjugate base? A) $HNO_2(aq)$ B) $H_2O(l)$ C) $H_3O^+(aq)$ D) $NO_2^-(aq)$ E) two of these 6. In which of the following reactions does the H₂PO₄ ion act as an acid? A) $H_3PO_4 + H_2O \rightarrow H_3O^+ + H_2PO_4^-$ B) $H_2PO_4^- + H_2O \rightarrow H_3O^+ + HPO_4^{2-}$
- C) $H_2PO_4^- + OH^- \rightarrow H_3PO_4 + O^{2-}$
 - D) The ion cannot act as an acid.
 - E) Two of these.
- 7. Which of the following is *not* true for a solution at 25°C that has a hydroxide concentration of
 - $2.5 \times 10^{-6} M$?
 - A) $K_{\rm w} = 1 \times 10^{-14}$
 - B) The solution is acidic.
 - C) The solution is basic.
 - D) The [H⁺] is $4.0 \times 10^{-9} M$.
 - E) The $K_{\rm w}$ is independent of what the solution contains.
- 8. A solution in which the pOH is 13.1 would be described as
 - A) very acidic
 - B) slightly acidic
 - C) neutral
 - D) very basic
 - E) slightly basic
- 9. Calculate the [H⁺] in a solution that has a pH of 2.73.
 - A) 2.7 M
 - B) 11.3 *M*
 - C) $1.9 \times 10^{-3} M$
 - D) $5.4 \times 10^{-12} M$
 - E) none of these
- 10. The pH of a solution at 25°C in which $[OH^-] = 3.9 \times 10^{-5} M$ is:
 - A) 4.41
 - B) 3.90
 - C) 9.59
 - D) 4.80
 - E) none of these

11. What is the pOH of pure water at 65° C? ($K_{\rm w}$ at 65° C = 1.20×10^{-13}) A) 7.540 B) 7.000 C) 14.000 D) 12.921 E) 6.460
12. Which of the following indicates the most basic solution? A) $[H^+] = 1 \times 10^{-10} M$ B) $pOH = 6.7$ C) $[OH^-] = 7 \times 10^{-5} M$ D) $pH = 4.2$ E) At least two of the solutions are equally basic.
13. Calculate the pH of 0.203 <i>M</i> HNO ₃ (<i>aq</i>). A) 0.693 B) 2.030 C) -1.140 D) 13.797 E) 1.595
14. Calculate the pH of a 0.031 <i>M</i> strong acid solution. A) -1.51 B) 1.51 C) 12.49 D) 15.51 E) none of these
15. Calculate the pH of a 0.13 M solution of HOCl, $K_a = 3.5 \times 10^{-8}$. A) 4.17 B) 8.34 C) 9.83 D) 1.00 E) 3.76
16. Acetic acid, $(HC_2H_3O_2)$ is a weak acid $(K_a=1.8\times 10^{-5})$. Calculate the pH of a 15.1 M $HC_2H_3O_2$ solution. A) -1.18 B) 3.57 C) 1.78 D) 1.18 E) 12.22

17. Calculate the [H ⁺] in a 0.068 M solution of HCN, $K_a = 6.2 \times 10^{-10}$. A) $1.0 \times 10^{-7} M$ B) $6.5 \times 10^{-6} M$ C) $4.2 \times 10^{-11} M$ D) $1.3 \times 10^{-5} M$ E) none of these
18. Determine the concentration of a solution of the weak acid $HClO_2$ ($K_a = 1.10 \times 10^{-2}$) if it has a pH of 1.075. A) $0.644 M$ B) $0.0841 M$ C) $7.65 M$ D) $12.9 M$ E) $1.287 M$
19. When 2.5×10^{-2} mol of nicotinic acid (a monoprotic acid) is dissolved in 350 mL of water, the pH is 3.05 . Calculate the K_a of nicotinic acid. A) 1.3×10^{-2} B) 1.1×10^{-5} C) 7.1×10^{-2} D) 3.3×10^{-5} E) none of these
20. Calculate the pH of a 0.02 <i>M</i> solution of KOH. A) 1.7 B) 15.7 C) 14.0 D) 12.3 E) cannot calculate answer unless a volume is given
 21. A 0.372-g sample of NaOH(s) is added to enough water to make 250.0 mL of solution. The pH of this solution is: A) 1.429 B) 0.429 C) 11.968 D) 12.571 E) none of these
22. Calculate the pOH of a 0.32 <i>M</i> solution of Ba(OH) ₂ . A) 0.49 B) 0.19 C) 13.81 D) 13.51 E) none of these

23. The conjugate acid and conjugate base of bicarbonate ion, HCO ₃ ⁻ , are, respectively: A) H ₃ O ⁺ and OH ⁻ B) H ₃ O ⁺ and CO ₃ ²⁻ C) H ₂ CO ₃ and OH ⁻ D) H ₂ CO ₃ and CO ₃ ²⁻ E) CO ₃ ²⁻ and OH ⁻	
24. The pH of a 1.0 <i>M</i> aqueous solution of NaCl is: A) 7.0 B) greater than 7.0 C) less than 7.0 D) not enough information given E) none of these (A-D)	
25. The equilibrium constant for the reaction $A^- + H^+ \Longrightarrow HA$ is called: A) K_a B) K_b C) $\frac{1}{K_a}$ D) $\frac{K_w}{K_b}$ E) K_wK_a	
26. What is the equilibrium constant for the following reaction? $N_3^- + H_3O^+ \Longrightarrow HN_3 + H_2O$ The K_a value for $HN_3 = 1.9 \times 10^{-5}$. A) 5.3×10^{-10} B) 1.9×10^{-9} C) 1.9×10^{-5} D) 5.3×10^4 E) 1.9×10^9	
27. At 65°C, the ion-product constant of water, $K_{\rm w}$, is 1.20×10^{-13} . The pH of pure water at 65°C is: A) 7.000 B) 6.560 C) 5.880 D) 6.460 E) none of these	
28. For weak acid, HX, $K_a = 6.9 \times 10^{-6}$. Calculate the pH of a 0.13 M solution of HX. A) 0.89 B) 3.02 C) 6.05 D) 10.98 E) none of these	

29. Which of the following solutions contains the strongest acid? A) $5.00 M$ HCN $(K_a = 6.2 \times 10^{-10})$ B) $3.50 M$ H ₂ C ₆ H ₆ O ₆ $(K_{a1} = 7.9 \times 10^{-5}, K_{a2} = 1.6 \times 10^{-12})$. C) $2.50 M$ HC ₂ H ₃ O ₂ $(K_a = 1.8 \times 10^{-5})$ D) $4.00 M$ HOCl $(K_a = 3.5 \times 10^{-8})$ E) $1.00 M$ HF $(K_a = 7.2 \times 10^{-4})$
30. The conjugate acid and conjugate base of bicarbonate ion, HCO ₃ ⁻ , are, respectively: A) H ₃ O ⁺ and OH ⁻ B) H ₃ O ⁺ and CO ₃ ²⁻ C) H ₂ CO ₃ and OH ⁻ D) H ₂ CO ₃ and CO ₃ ²⁻ E) CO ₃ ²⁻ and OH ⁻
31. The products of a strong acid a strong base are:
a) acidic
b) basic
c) amphoteric
d) water and salt
32. Which would be a useful pH range for an indicator used for a neutralization reaction? a) 0-4 b) 8-12 c) 6-8 d) not enough information e) too much information
33. Find the concentration of HCl if it takes 12.5 mL of HCl to neutralize 144 mL of 3.00M NaOH.

a) 34.6 M b) 64.3 M c) 17.3 M d) 43.6 M

Go Vikings!!