Chapter 14 TEST: Acids and Bases

1. For the equilibrium that exists in an aqueous solution of nitrous acid $\left(\mathrm{HNO}_{2}\right.$, a weak acid), the equilibrium constant expression is:
A) $K=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}$
B) $K=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{N}^{3+}\right]\left[\mathrm{O}^{2-}\right]^{2}}{\left[\mathrm{HNO}_{2}\right]}$
C) $K=\left[\mathrm{H}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]$
D) $K=\frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{NO}_{2}{ }^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}$
E) none of these
2. Which of the following is a conjugate acid/base pair?
A) $\mathrm{HCl} / \mathrm{OCl}^{-}$
B) $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{SO}_{4}{ }^{2-}$
C) $\mathrm{NH}_{4}^{+} / \mathrm{NH}_{3}$
D) $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{OH}^{-}$
E) more than one of these
3. The hydrogen sulfate or bisulfate ion HSO_{4}^{-}can act as either an acid or a base in water solution. In which of the following equations does $\mathrm{HSO}_{4}{ }^{-}$act as an acid?
A) $\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{OH}^{-}$
B) $\mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{SO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
C) $\mathrm{HSO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{O}^{2-}$
D) $\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
E) none of these
4. Which of the following is the equilibrium constant expression for the dissociation of the weak acid HOCl ?
A) $K=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OCl}^{-}\right]}{[\mathrm{HOCl}]}$
B) $K=\left[\mathrm{H}^{+}\right]\left[\mathrm{OCl}^{-}\right]$
C) $K=\frac{[\mathrm{HOCl}]}{\left[\mathrm{H}^{+}\right]\left[\mathrm{OCl}^{-}\right]}$
D) $K=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{O}^{2-}\right]\left[\mathrm{Cl}^{-}\right]}{[\mathrm{HOCl}]}$
E) none of these
5. Consider the reaction $\mathrm{HNO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{2}{ }^{-}(a q)$. Which species is a conjugate base?
A) $\mathrm{HNO}_{2}(a q)$
B) $\mathrm{H}_{2} \mathrm{O}(l)$
C) $\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
D) $\mathrm{NO}_{2}^{-}(a q)$
E) two of these
6. In which of the following reactions does the $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ion act as an acid?
A) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
B) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HPO}_{4}{ }^{2-}$
C) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{O}^{2-}$
D) The ion cannot act as an acid.
E) Two of these.
7. Which of the following is not true for a solution at $25^{\circ} \mathrm{C}$ that has a hydroxide concentration of $2.5 \times 10^{-6} \mathrm{M}$?
A) $K_{\mathrm{w}}=1 \times 10^{-14}$
B) The solution is acidic.
C) The solution is basic.
D) The $\left[\mathrm{H}^{+}\right]$is $4.0 \times 10^{-9} \mathrm{M}$.
E) The K_{w} is independent of what the solution contains.
8. A solution in which the pOH is 13.1 would be described as
A) very acidic
B) slightly acidic
C) neutral
D) very basic
E) slightly basic
9. Calculate the $\left[\mathrm{H}^{+}\right]$in a solution that has a pH of 2.73 .
A) 2.7 M
B) 11.3 M
C) $1.9 \times 10^{-3} \mathrm{M}$
D) $5.4 \times 10^{-12} \mathrm{M}$
E) none of these
10. The pH of a solution at $25^{\circ} \mathrm{C}$ in which $\left[\mathrm{OH}^{-}\right]=3.9 \times 10^{-5} \mathrm{M}$ is:
A) 4.41
B) 3.90
C) 9.59
D) 4.80
E) none of these
11. What is the pOH of pure water at $65^{\circ} \mathrm{C}$? $\left(K_{\mathrm{w}}\right.$ at $\left.65^{\circ} \mathrm{C}=1.20 \times 10^{-13}\right)$
A) 7.540
B) 7.000
C) 14.000
D) 12.921
E) 6.460
12. Which of the following indicates the most basic solution?
A) $\left[\mathrm{H}^{+}\right]=1 \times 10^{-10} \mathrm{M}$
B) $\mathrm{pOH}=6.7$
C) $\left[\mathrm{OH}^{-}\right]=7 \times 10^{-5} \mathrm{M}$
D) $\mathrm{pH}=4.2$
E) At least two of the solutions are equally basic.
13. Calculate the pH of $0.203 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$.
A) 0.693
B) 2.030
C) -1.140
D) 13.797
E) 1.595
14. Calculate the pH of a 0.031 M strong acid solution.
A) -1.51
B) 1.51
C) 12.49
D) 15.51
E) none of these
15. Calculate the pH of a 0.13 M solution of $\mathrm{HOCl}, K_{\mathrm{a}}=3.5 \times 10^{-8}$.
A) 4.17
B) 8.34
C) 9.83
D) 1.00
E) 3.76
16. Acetic acid, $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ is a weak acid $\left(K_{\mathrm{a}}=1.8 \times 10^{-5}\right)$. Calculate the pH of a $15.1 M \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solution.
A) -1.18
B) 3.57
C) 1.78
D) 1.18
E) 12.22
17. Calculate the $\left[\mathrm{H}^{+}\right]$in a 0.068 M solution of $\mathrm{HCN}, K_{\mathrm{a}}=6.2 \times 10^{-10}$.
A) $1.0 \times 10^{-7} \mathrm{M}$
B) $6.5 \times 10^{-6} \mathrm{M}$
C) $4.2 \times 10^{-11} \mathrm{M}$
D) $1.3 \times 10^{-5} \mathrm{M}$
E) none of these
18. Determine the concentration of a solution of the weak acid $\mathrm{HClO}_{2}\left(K_{\mathrm{a}}=1.10 \times 10^{-2}\right)$ if it has a pH of 1.075 .
A) 0.644 M
B) 0.0841 M
C) 7.65 M
D) 12.9 M
E) 1.287 M
19. When $2.5 \times 10^{-2} \mathrm{~mol}$ of nicotinic acid (a monoprotic acid) is dissolved in 350 mL of water, the pH is 3.05. Calculate the K_{a} of nicotinic acid.
A) 1.3×10^{-2}
B) 1.1×10^{-5}
C) 7.1×10^{-2}
D) 3.3×10^{-5}
E) none of these
20. Calculate the pH of a 0.02 M solution of KOH .
A) 1.7
B) 15.7
C) 14.0
D) 12.3
E) cannot calculate answer unless a volume is given
21. A $0.372-\mathrm{g}$ sample of $\mathrm{NaOH}(s)$ is added to enough water to make 250.0 mL of solution. The pH of this solution is:
A) 1.429
B) 0.429
C) 11.968
D) 12.571
E) none of these
22. Calculate the pOH of a 0.32 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$.
A) 0.49
B) 0.19
C) 13.81
D) 13.51
E) none of these
23. The conjugate acid and conjugate base of bicarbonate ion, $\mathrm{HCO}_{3}{ }^{-}$, are, respectively:
A) $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}
B) $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{CO}_{3}{ }^{2-}$
C) $\mathrm{H}_{2} \mathrm{CO}_{3}$ and OH^{-}
D) $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{CO}_{3}{ }^{2-}$
E) $\mathrm{CO}_{3}{ }^{2-}$ and OH^{-}
24. The pH of a 1.0 M aqueous solution of NaCl is:
A) 7.0
B) greater than 7.0
C) less than 7.0
D) not enough information given
E) none of these (A-D)
25. The equilibrium constant for the reaction $\mathrm{A}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{HA}$ is called:
A) K_{a}
B) K_{b}
C) $\frac{1}{K_{\mathrm{a}}}$
D) $\frac{K_{\mathrm{w}}}{K_{\mathrm{b}}}$
E) $K_{\mathrm{w}} K_{\mathrm{a}}$
26. What is the equilibrium constant for the following reaction? $\mathrm{N}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{HN}_{3}+\mathrm{H}_{2} \mathrm{O}$

The K_{a} value for $\mathrm{HN}_{3}=1.9 \times 10^{-5}$.
A) 5.3×10^{-10}
B) 1.9×10^{-9}
C) 1.9×10^{-5}
D) 5.3×10^{4}
E) 1.9×10^{9}
27. At $65^{\circ} \mathrm{C}$, the ion-product constant of water, K_{w}, is 1.20×10^{-13}. The pH of pure water at $65^{\circ} \mathrm{C}$ is:
A) 7.000
B) 6.560
C) 5.880
D) 6.460
E) none of these
28. For weak acid, HX, $K_{\mathrm{a}}=6.9 \times 10^{-6}$. Calculate the pH of a 0.13 M solution of HX.
A) 0.89
B) 3.02
C) 6.05
D) 10.98
E) none of these
29. Which of the following solutions contains the strongest acid?
A) $5.00 \mathrm{M} \mathrm{HCN}\left(K_{\mathrm{a}}=6.2 \times 10^{-10}\right)$
B) $3.50 \mathrm{M}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}\left(K_{\mathrm{a} 1}=7.9 \times 10^{-5}, K_{\mathrm{a} 2}=1.6 \times 10^{-12}\right)$.
C) $2.50 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\left(K_{\mathrm{a}}=1.8 \times 10^{-5}\right)$
D) $4.00 \mathrm{M} \mathrm{HOCl}\left(K_{\mathrm{a}}=3.5 \times 10^{-8}\right)$
E) $1.00 M \mathrm{HF}\left(K_{\mathrm{a}}=7.2 \times 10^{-4}\right)$
30. The conjugate acid and conjugate base of bicarbonate ion, $\mathrm{HCO}_{3}{ }^{-}$, are, respectively:
A) $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}
B) $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{CO}_{3}{ }^{2-}$
C) $\mathrm{H}_{2} \mathrm{CO}_{3}$ and OH^{-}
D) $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{CO}_{3}{ }^{2-}$
E) $\mathrm{CO}_{3}{ }^{2-}$ and OH^{-}
31. The products of a strong acid a strong base are:
a) acidic
b) basic
c) amphoteric
d) water and salt
32. Which would be a useful pH range for an indicator used for a neutralization reaction?
a) 0-4
b) 8-12
c) 6-8
d) not enough information
e) too much information
33. Find the concentration of HCl if it takes 12.5 mL of HCl to neutralize 144 mL of 3.00 M NaOH .
a) 34.6 M
b) 64.3 M
c) 17.3 M
d) 43.6 M

