Date: Hour: ## AP Chem Ch.4 Review | 1) | In | which | of the | e following | g does | nitrogen | have t | he lov | west oxid | ation state? | 7 | |-----|-----|----------|--------|-------------|--------|-----------------|--------|--------|------------|---------------|---| | 1 / | TIL | AATITOTI | OT III | TOTIO WILL | E GOOL |) III II O COII | 11uv u | 110 10 | WOOL OZZIG | alloll blute. | | - A) HNO₃ - 4+ B) NO₂ - C) N₂O - D) NH₄Cl 3- - 3+ E) NaNO₂ - (A) HNO₃ - B) NO₂ - 4+ - C) N₂O D) NH₄Cl - 3-3+ - E) NaNO₂ 3) Identify the precipitate(s) formed (if any) in the following reaction in aqueous solution, $$Fe(NO_3)_2 + Constant = 1$$ - $(NH_4)_2CO_3 \rightarrow$ - A) $Fe_2(CO_3)_3$ - (B) FeCO₃(s) - C) $(NH_4)_2CO_3(s)$ - D) $NH_4NO_3(s)$ - E) No precipitate will be observed 4) Select the spectator ions for the following reaction in aqueous solution, $$AgNO_3 + LiI \rightarrow AgI + LiNO_3$$ - (A) Li⁺(aq), NO₃ (aq) - B) $Ag^{+}(aq)$, $NO_{3}^{-}(aq)$ - C) $Li^{+}(aq)$, $\Gamma(aq)$ - D) Ag⁺(aq), I (aq), Li⁺(aq), NO₃ (aq) - E) $Ag^{+}(aq)$, $I^{-}(aq)$ 5) In the reaction shown below, what species is oxidized? $$2 \vec{N} a \vec{I} + B \vec{r_2} \rightarrow 2 \vec{N} \vec{a} \vec{Br} + \vec{I_2}$$ $$2NaI + Br_2 \rightarrow 2NaBr + I_2$$ - A) Na⁺ - (B) I - C) Br₂ - D) Br - E) I₂ 6) How many of the following are oxidation-reduction reactions? NaOH + HCl $$\rightarrow$$ NaCl + H₂O Cu + 2AgNO₃ \rightarrow 2Ag + Cu(NO₃)₂ Mg(OH)₂ \rightarrow MgO + H₂O N₂ + 3H₂ \rightarrow 2NH₃ - A) 0 - B) 1 - (C) 2 - D) 3 - E) 4 7) In the following reaction, which species is oxidized? 8NaI + $5H_2SO_4 \rightarrow 4I_2 + H_2S + 4Na_2SO_4 + 4H_2O$ - A) sodium - (B) iodine - C) sulfur - D) hydrogen - E) oxygen 8) Which of the following are oxidation-reduction reactions? - PCl₃ + Cl₂ \rightarrow PCl₅ Cµ + 2AgNO₃ \rightarrow Cµ(NO₃)₂ + 2Ag CO₂ + 2LiOH \rightarrow Li₂CO₃ + H₂O FeCl₂ + 2NaOH \rightarrow Fe(OH)₂ + 2NaCl I. II. - III. - IV. - A) III - B), IV - (C) I and II - D) I, II, and III - E) I, II, III, and IV 9) The oxidation state of iodine in IO₃⁻ is: - A) 0 - B) +3 - C) -3 - D)) +5 | 10) In which of the | following do | es nitrogen have an oxidation state of +4? | |---|--------------|--| | A) HNO_3 | +5 | | | $\stackrel{\frown}{\text{B}}$ NO_2 | 44 | | | \tilde{C}) N_2O | 1 | | - 13) You have separate solutions of HCl and H₂SO₄ with the same concentrations in terms of molarity. You wish to neutralize a solution of NaOH. Which acid solution would require more volume (in mL) to neutralize the base? - A) The HCl solution. D) NH₄Cl E) NaNO₂ - B) The H_2SO_4 solution. - C) You need to know the acid concentrations to answer this question. - D) You need to know the volume and concentration of the NaOH solution to answer this question. - E) C and D hint: HU makes 2 mol of ions; H2SO4 makes 3 moles of ions - 14) You have exposed electrodes of a light bulb in a solution of H₂SO₄ such that the light bulb is on. You add a dilute solution and the bulb grows dim. Which of the following could be in the solution? hint: precipitate - \widehat{A} Ba(OH)₂ - B) NaNO₃ - C) K_2SO_4 - D) $Cu(NO_3)_2$ - E) none of these - II. the molar mass of the salt - III. the volume of water added - IV. the total volume of the solution - A) I, III - B) I, II, III - C) II, III - (D) I, II, IV - E) You need all of the information. - 17) What volume of 18 M sulfuric acid must be used to prepare 2.30 L of 0.145 M H₂SO₄? - (A) 19 mL - B) 0.33 mL - C) $1.1 \times 10^3 \text{ mL}$ - D) 2.9 mL - E) 6.0 mL Go VIKINGS!!