Chapter 5 TEST: Gases

1) Gases generally have
A) low density
B) high density
C) closely packed particles
D) no increase in volume when temperature is increased
E) no decrease in volume when pressure is increased
2) The SI unit of pressure is the
A) ampere
B) kilojoule
C) newton
D) gram
E) pascal
3) A physics experiment is conducted at a pressure of 14.4 kPa . What is this pressure in mmHg ?
A) 18.9 mmHg
B) 1.92 mmHg
C) $1.44 \times 10^{4} \mathrm{mmHg}$
D) 108 mmHg
E) $1.89 \times 10^{-2} \mathrm{mmHg}$
4) Boyle's law states that:
A) Equal amounts of gases occupy the same volume at constant temperature and pressure.
B) The volume of a fixed amount of gas is inversely proportional to its pressure at constant temperature.
C) The volume of a fixed amount of gas is directly proportional to its temperature in Kelvin at constant pressure.
D) The total pressure of a mixture of gases is the simple sum of the partial pressure of all of the gaseous compounds.
E) The rates of effusion of gases are inversely proportional to the square roots of their molar masses.
5) A gas sample is held at constant pressure. The gas occupies 3.62 L of volume when the temperature is $21.6^{\circ} \mathrm{C}$. Determine the temperature at which the volume of the gas is 3.42 L .
A) 312 K
B) 278 K
C) 20.4 K
D) 295 K
E) 552 K
6) Body temperature is about 309 K . On a cold day, what volume of air at 276 K must a person with a lung capacity of 2.2 L breathe in to fill the lungs?
A) 2.46 L
B) 1.97 L
C) 2.08 L
D) 3.93 L
E) none of these
7) A gas sample is heated from $-20.0^{\circ} \mathrm{C}$ to $57.0^{\circ} \mathrm{C}$ and the volume is increased from 2.00 L to 4.50 L . If the initial pressure is 0.140 atm , what is the final pressure?
A) 0.0477 atm
B) -0.177 atm
C) 0.411 atm
D) 0.242 atm
E) 0.0811 atm
8) A sample of 35.1 g of methane gas has a volume of 3.11 L at a pressure of 2.70 atm . Calculate the temperature.
A) 2.92 K
B) 46.8 K
C) 320 K
D) 32.4 K
E) 35.0 K

Four identical 1.0-L flasks contain the gases $\mathrm{He}, \mathrm{Cl}_{2}, \mathrm{CH}_{4}$, and NH_{3}, each at $0^{\circ} \mathrm{C}$ and 1 atm pressure.
9) For which gas do the molecules have the highest average velocity?
A) He
B) Cl_{2}
C) CH_{4}
D) NH_{3}
E) all gases the same
10) For which gas are the molecules diatomic?
A) He
B) Cl_{2}
C) CH_{4}
D) NH_{3}
E) all gases the same
11) For which gas do the molecules have the smallest average kinetic energy?
A) He
B) Cl_{2}
C) CH_{4}
D) NH_{3}
E) all gases the same
12) What volume of carbon dioxide measured at $S T P$ will be formed by the reaction of 1.47 mol of oxygen with 0.900 mol of ethyl alcohol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$?
A) 40.3 mL
B) 22.0 L
C) 32.9 L
D) 49.4 L
E) 0.980 L
13) What volume does 40.5 g of N_{2} occupy at STP?
A) 64.8 L
B) 1.81 L
C) 32.4 L
D) 50.7 L
E) none of these
14) A mixture is prepared from 15.0 L of ammonia and 15.0 L chlorine measured at the same conditions; these compounds react according to the following equation:
$2 \mathrm{NH}_{3}(g)+3 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+6 \mathrm{HCl}(\mathrm{g})$
When the reaction is completed, what is the volume of each gas $\left(\mathrm{NH}_{3}, \mathrm{Cl}_{2}, \mathrm{~N}_{2}\right.$, and HCl , respectively)? Assume the final volumes are measured under identical conditions.
A) $0.00 \mathrm{~L}, 5.00 \mathrm{~L}, 7.50 \mathrm{~L}, 45.0 \mathrm{~L}$
B) $5.00 \mathrm{~L}, 0.00 \mathrm{~L}, 5.00 \mathrm{~L}, 30.0 \mathrm{~L}$
C) $0.00 \mathrm{~L}, 0.00 \mathrm{~L}, 7.50 \mathrm{~L}, 45.0 \mathrm{~L}$
D) $0.00 \mathrm{~L}, 0.00 \mathrm{~L}, 5.00 \mathrm{~L}, 30.0 \mathrm{~L}$
E) $0.00 \mathrm{~L}, 10.0 \mathrm{~L}, 15.0 \mathrm{~L}, 90.0 \mathrm{~L}$
15) An excess of sodium hydroxide is treated with 26.5 L of dry hydrogen chloride gas measured at STP.

What is the mass of sodium chloride formed?
A) 1.55 kg
B) 1.69 g
C) 0.138 kg
D) 69.1 g
E) 13.3 g
16) The standard temperature for gases is
A) $100^{\circ} \mathrm{C}$
B) $0^{\circ} \mathrm{C}$
C) $32^{\circ} \mathrm{C}$
D) $212^{\circ} \mathrm{F}$
E) $0^{\circ} \mathrm{F}$
17) Standard pressure for gases is
A) 0 atm
B) 1 atm
C) 100 atm
D) dependent upon temperature
E) none of the above
18) A $142-\mathrm{mL}$ sample of gas is collected over water at $22^{\circ} \mathrm{C}$ and 753 torr. What is the volume of the dry gas at STP? (The vapor pressure of water at $22^{\circ} \mathrm{C}=20$. torr)
A) 122 mL
B) 162 mL
C) 136 mL
D) 111 mL
E) none of these
19) The valve between a $5-\mathrm{L}$ tank containing a gas at 9 atm and a $10-\mathrm{L}$ tank containing a gas at 6 atm is opened. Calculate the final pressure in the tanks.
A) 3 atm
B) 4 atm
C) 7 atm
D) 15 atm
E) none of these
20) Consider the following containers, one with helium at $27^{\circ} \mathrm{C}$ and the other with argon at $27^{\circ} \mathrm{C}$.

Which of the following statements are true?
A) The speed of each atom of helium is $926 \mathrm{~m} / \mathrm{s}$.
B) The rms speed of the He and the Ar atoms are the same.
C) The average kinetic energy of the two samples are equal.
D) All of the above are true.
E) None of the above are true.
21) Which of the following would have a higher rate of effusion than $\mathrm{C}_{2} \mathrm{H}_{2}$?
A) N_{2}
B) O_{2}
C) Cl_{2}
D) CH_{4}
E) CO_{2}
22) Hydrogen and chlorine gases react to form HCl . You and a friend are on opposite sides of a long hallway, you with H_{2} and your friend with Cl_{2}. You both want to form HCl in the middle of the room. Which of the following is true?
A) You should release the H_{2} first.
B) Your friend should release the Cl_{2} first.
C) You both should release the gases at the same time.
D) You need to know the length of the room to answer this question.
E) You need to know the temperature to answer this question.
23) A sample of gas occupies 20.0 liters at $32^{\circ} \mathrm{C}$ when the pressure is 0.750 atm . What temperature in ${ }^{\circ} \mathrm{C}$ is required to increase the volume to 25.0 liters at a pressure of 0.680 atm ?
A) $-3.90^{\circ} \mathrm{C}$
B) $309{ }^{\circ} \mathrm{C}$
C) $72.7^{\circ} \mathrm{C}$
D) $346{ }^{\circ} \mathrm{C}$
E) $36.1^{\circ} \mathrm{C}$
24) Consider the reaction between ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ and oxygen gas $\left(\mathrm{O}_{2}\right)$ to produce carbon dioxide and water, as shown. What volume of carbon dioxide will be produced at STP from the reaction of 4.00 L of ethane with 7.00 L of oxygen?
A) $2.00 \mathrm{~L} \mathrm{CO}_{2}$
B) $3.00 \mathrm{~L} \mathrm{CO}_{2}$
C) $4.00 \mathrm{~L} \mathrm{CO}_{2}$
D) $6.00 \mathrm{~L} \mathrm{CO}_{2}$
E) $8.00 \mathrm{~L} \mathrm{CO}_{2}$

BONUS

A 3.31-g sample of lead nitrate, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, molar mass $=331 \mathrm{~g} / \mathrm{mol}$, is heated in an evacuated cylinder with a volume of 2.37 L . The salt decomposes when heated, according to the equation:
$2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{PbO}(\mathrm{s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Assuming complete decomposition, what is the pressure in the cylinder after decomposition and cooling to a temperature of $300 . \mathrm{K}$? Assume the $\mathrm{PbO}(s)$ takes up negligible volume.
A) 0.260 atm
B) 0.208 atm
C) 0.0519 atm
D) 0.364 atm
E) 34.4 atm

