MULTIPLE CHOICE

1) Which of the following is true about a system at equilibrium?
A) The concentration(s) of the reactant(s) is equal to the concentration(s) of the product(s).
B) No new product molecules are formed.
C) The concentration(s) of reactant(s) is constant over time.
D) The rate of the reverse reaction is equal to the rate of the forward reaction and both rates are equal to zero.
E) None of the above (A-D) is true.
2) Which of the following is true about chemical equilibrium?
A) It is microscopically and macroscopically static.
B) It is microscopically and macroscopically dynamic.
C) It is microscopically static and macroscopically dynamic.
D) It is microscopically dynamic and macroscopically static.
E) None of these are true about chemical equilibrium.
3) Equilibrium is reached in chemical reactions when:
A) The rates of the forward and reverse reactions become equal.
B) The concentrations of reactants and products become equal.
C) The temperature shows a sharp rise.
D) All chemical reactions stop.
E) The forward reaction stops.
4) For the reaction given below, 2.00 moles of A and 3.00 moles of B are placed in a $6.00-\mathrm{L}$ container.

$$
\mathrm{A}(\mathrm{~g})+2 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons \mathrm{C}(\mathrm{~g})
$$

At equilibrium, the concentration of A is $0.246 \mathrm{~mol} / \mathrm{L}$. What is the concentration of B at equilibrium?
A) $0.246 \mathrm{~mol} / \mathrm{L}$
B) $0.325 \mathrm{~mol} / \mathrm{L}$
C) $0.500 \mathrm{~mol} / \mathrm{L}$
D) $0.492 \mathrm{~mol} / \mathrm{L}$
E) none of these
5) If the equilibrium constant for $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}$ is 0.208 , then the equilibrium constant for $2 \mathrm{C} \rightleftharpoons 2 \mathrm{~A}+2 \mathrm{~B}$ is
A) 0.584
B) 4.81
C) 0.416
D) 23.1
E) 0.208
6) Apply the law of mass action to determine the equilibrium expression for $2 \mathrm{NO}_{2} \mathrm{Cl}(a q) \rightleftharpoons 2 \mathrm{NO}_{2}(a q)$ $+\mathrm{Cl}_{2}(a q)$.
A) $K=2\left[\mathrm{NO}_{2}\right]\left[\mathrm{Cl}_{2}\right] / 2\left[\mathrm{NO}_{2} \mathrm{Cl}\right]$
B) $K=2\left[\mathrm{NO}_{2} \mathrm{Cl}\right] / 2\left[\mathrm{NO}_{2}\right]\left[\mathrm{Cl}_{2}\right]$
C) $K=\left[\mathrm{NO}_{2} \mathrm{Cl}\right]^{2} /\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{Cl}_{2}\right]$
D) $K=\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{Cl}_{2}\right] /\left[\mathrm{NO}_{2} \mathrm{Cl}\right]^{2}$
E) $K=\left[\mathrm{NO}_{2} \mathrm{Cl}\right]^{2}\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{Cl}_{2}\right]$
7) At a given temperature, $K=0.017$ for the equilibrium:
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
What is K for:
$\mathrm{Cl}_{2}(g)+\mathrm{PCl}_{3}(g) \rightleftharpoons \mathrm{PCl}_{5}(g)$?
A) 0.017
B) 59
C) 0.00029
D) 17
E) 3500
8) Which expression correctly describes the equilibrium constant for the following reaction?
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightleftharpoons 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$
A) $\left.K=\left(4 \mathrm{NH}_{3}\right]+5\left[\mathrm{O}_{2}\right]\right) /\left(4[\mathrm{NO}]+6\left[\mathrm{H}_{2} \mathrm{O}\right]\right)$
B) $\left.K=\left(4[\mathrm{NO}]+6\left[\mathrm{H}_{2} \mathrm{O}\right]\right) /\left(4 \mathrm{NH}_{3}\right]+5\left[\mathrm{O}_{2}\right]\right)$
C) $K=\left([\mathrm{NO}]\left[\mathrm{H}_{2} \mathrm{O}\right]\right) /\left(\left[\mathrm{NH}_{3}\right]\left[\mathrm{O}_{2}\right]\right)$
D) $K=\left(\left[\mathrm{NO}^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}\right) /\left(\left[\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}\right)\right.\right.$
E) $K=\left(\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}\right) /\left([\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}\right)$
(Use for \#9 and \#10) Consider the chemical system $\mathrm{CO}+\mathrm{Cl}_{2} \rightleftharpoons \mathrm{COCl}_{2} ; K=4.6 \times 10^{9} \mathrm{~L} / \mathrm{mol}$.
9) How do the equilibrium concentrations of the reactants compare to the equilibrium concentration of the product?
A) They are much smaller.
B) They are much bigger.
C) They are about the same.
D) They have to be exactly equal.
E) You can't tell from the information given.
10) If the concentration of the product were to double, what would happen to the equilibrium constant?
A) It would double its value.
B) It would become half its current value.
C) It would quadruple its value.
D) It would not change its value.
E) It would depend on the initial conditions of the product.
11) Determine the equilibrium constant for the system $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$ at $25^{\circ} \mathrm{C}$. The concentrations are shown here: $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=2.32 \times 10^{-2} \mathrm{M},\left[\mathrm{NO}_{2}\right]=1.41 \times 10^{-2} \mathrm{M}$.
A) 0.608
B) 1.65
C) 1.17×10^{2}
D) 0.369
E) 8.57×10^{-3}
12) If $K=0.144$ for $\mathrm{A}_{2}+2 \mathrm{~B} \rightleftharpoons 2 \mathrm{AB}$, then for $4 \mathrm{AB} \rightleftharpoons 2 \mathrm{~A}_{2}+4 \mathrm{~B}, K$ would equal:
A) 0.288
B) 0.144
C) -0.144
D) 3.47
E) 48.2
13) For the reaction $\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{HCl}(g), K_{\mathrm{c}}=1.22 \times 10^{33}$ at a temperature of 301 K . What is K_{p} at this temperature?
A) 1.22×10^{33}
B) 3.01×10^{34}
C) 4.93×10^{31}
D) 7.43×10^{35}
E) 2.00×10^{30}
14) Consider the following reaction:

$$
2 \mathrm{HF}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{F}_{2}(g) \quad\left(K=1.00 \times 10^{-2}\right)
$$

Given 1.00 mole of $\mathrm{HF}(g), 0.362$ mole of $\mathrm{H}_{2}(g)$, and 0.750 mole of $\mathrm{F}_{2}(g)$ are mixed in a 5.00 L flask, determine the reaction quotient, Q.
A) $Q=0.0543$
B) $Q=0.272$
C) $Q=0.0679$
D) $Q=2.11$
E) none of these
15) Consider the following equilibrated system: $2 \mathrm{NO}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$. If the K_{p} value is 0.604 , find the equilibrium pressure of the O_{2} gas if the NO_{2} gas pressure is 0.520 atm and the P_{NO} is 0.300 atm at equilibrium.
A) 1.05 atm
B) 24.8 atm
C) 0.348 atm
D) 0.201 atm
E) 1.81 atm
16) For the reaction given below, 2.00 moles of A and 3.00 moles of B are placed in a $6.00-\mathrm{L}$ container.

$$
\mathrm{A}(g)+2 \mathrm{~B}(g) \rightleftharpoons \mathrm{C}(g)
$$

At equilibrium, the concentration of A is $0.213 \mathrm{~mol} / \mathrm{L}$. What is the value of K ?
A) 2.18
B) 1.79
C) 0.213
D) 8.40
E) 0.565
17) Initially 2.0 moles of $\mathrm{N}_{2}(g)$ and 4.0 moles of $\mathrm{H}_{2}(g)$ were added to a 1.0-liter container and the following reaction then occurred:

$$
3 \mathrm{H}_{2}(g)+\mathrm{N}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)
$$

The equilibrium concentration of $\mathrm{NH}_{3}(g)=0.55 \mathrm{moles} /$ liter at $700 .{ }^{\circ} \mathrm{C}$. The value for K at $700 .{ }^{\circ} \mathrm{C}$ for the formation of ammonia is:
A) 1.0×10^{-1}
B) 5.5×10^{-2}
C) 5.5×10^{-3}
D) 3.0×10^{-1}
E) none of these
18) The following reaction is investigated (assume an ideal gas mixture):

$$
2 \mathrm{~N}_{2} \mathrm{O}(g)+\mathrm{N}_{2} \mathrm{H}_{4}(g) \rightleftharpoons 3 \mathrm{~N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)
$$

Initially there are 0.10 moles of $\mathrm{N}_{2} \mathrm{O}$ and 0.25 moles of $\mathrm{N}_{2} \mathrm{H}_{4}$, in a 10.0-L container. If there are 0.048 moles of $\mathrm{N}_{2} \mathrm{O}$ at equilibrium, how many moles of N_{2} are present at equilibrium?
A) 2.6×10^{-2}
B) 5.2×10^{-2}
C) 7.8×10^{-2}
D) 1.6×10^{-1}
E) none of these
(Use for \#19-21) Given the equation $2 \mathrm{~A}(g) \rightleftharpoons 2 \mathrm{~B}(g)+\mathrm{C}(g)$. At a particular temperature, $K=1.6 \times 10^{4}$.
19) If you mixed $5.0 \mathrm{~mol} \mathrm{~B}, 0.10 \mathrm{~mol} \mathrm{C}$, and 0.0010 mol A in a one-liter container, which direction would the reaction initially proceed?
A) To the left.
B) To the right.
C) The above mixture is the equilibrium mixture.
D) Cannot tell from the information given.
E) None of these (A-D).
20) Addition of chemical B to an equilibrium mixture of the above will
A) cause [A] to increase
B) cause [C] to increase
C) have no effect
D) cannot be determined
E) none of the above
21) Raising the pressure by lowering the volume of the container will
A) cause [A] to increase
B) cause $[B]$ to increase
C) have no effect
D) cannot be determined
E) none of the above
22) Which of the following statements concerning equilibrium is not true?
A) A system that is disturbed from an equilibrium condition responds in a manner to restore equilibrium.
B) Equilibrium in molecular systems is dynamic, with two opposing processes balancing one another.
C) The value of the equilibrium constant for a given reaction mixture is the same regardless of the direction from which equilibrium is attained.
D) A system moves spontaneously toward a state of equilibrium.
E) The equilibrium constant is independent of temperature.
23) For a certain reaction at $25.0^{\circ} \mathrm{C}$, the value of K is 1.2×10^{-3}. At $50.0^{\circ} \mathrm{C}$ the value of K is 3.4×10^{-1}. This means that the reaction is
A) exothermic
B) endothermic
C) never favorable
D) more information needed
E) none of these (A-D)
24) Consider the following equilibrium: $2 \mathrm{H}_{2}(g)+\mathrm{X}_{2}(g) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{X}(g)+$ energy

Addition of X_{2} to a system described by the above equilibrium
A) will cause $\left[\mathrm{H}_{2}\right]$ to decrease
B) will cause $\left[\mathrm{X}_{2}\right]$ to decrease
C) will cause $\left[\mathrm{H}_{2} \mathrm{X}\right]$ to decrease
D) will have no effect
E) cannot possibly be carried out
25) Consider the following system at equilibrium: $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)+92.94 \mathrm{~kJ}$

Which of the following changes will shift the equilibrium to the right?
I. increasing the temperature
II. decreasing the temperature
III. increasing the volume
IV. decreasing the volume
V. removing some NH_{3}
VI. adding some NH_{3}
VII. removing some N_{2}
VIII. adding some N_{2}
A) I, IV, V, VIII
B) II, III, V, VIII
C) I, VI, VIII
D) I, III, V, VII
E) II, IV, V, VIII
26) Consider the combustion of methane (as represented by the following equation). This is the reaction that occurs for a Bunsen burner, which is a source of heat for chemical reactions in the laboratory.
$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$
For the system at chemical equilibrium, which of the following explains what happens if the temperature is raised?
A) The equilibrium position is shifted to the right and the value for K increases.
B) The equilibrium position is shifted to the right and the value for K decreases.
C) The equilibrium position is shifted to the left and the value for K decreases.
D) The equilibrium position is shifted to the left and the value for K increases.
E) The equilibrium position is shifted but the value for K stays constant.
27) For the gaseous reaction, $2 \mathrm{H}_{2}+2 \mathrm{NO} \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}, \mathrm{~K}_{\mathrm{p}}$ at $120^{\circ} \mathrm{C}=2.42$. At a given moment, it is found that the partial pressures of $\mathrm{H}_{2}, \mathrm{NO}, \mathrm{H}_{2} \mathrm{O}$ and N_{2} are 1.1, 1.3, 0.78 and 2.2 atm , respectively. Which of the following statements describes the situation?
A) $\mathrm{Q}_{\mathrm{p}}=1.2$ so the reaction goes to the right
B) $\mathrm{Q}_{\mathrm{p}}=1.2$ so the reaction goes to the left
C) $Q_{p}=0.65$ so the reaction goes to the right
D) $\mathrm{Q}_{\mathrm{p}}=0.65$ so the reaction goes to the left
E) The reaction is at equilibrium
28) What effect does a) increasing the total pressure and b) increasing the temperature have on the equilibrium $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}), \Delta \mathrm{H}^{\mathrm{o}}=41.2 \mathrm{~kJ} / \mathrm{mol}$.
A) a) equilibrium shifts towards products, b) equilibrium shifts towards products.
B) a) equilibrium shifts towards reactants, b) equilibrium shifts towards products.
C) a) equilibrium shifts towards products, b) equilibrium shifts towards reactants.
D) a) no change in the equilibrium,
b) equilibrium shifts towards products.
E) a) no change in the equilibrium,
b) equilibrium shifts towards reactants.
29) Consider the reaction, which is exothermic as written, $\mathrm{PCl}_{5}(\mathrm{~g}) \leftrightarrows \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$. Which of the following changes would result in the production of $\operatorname{MORE~} \mathrm{Cl}_{2}(\mathrm{~g})$?
I. adding $\mathrm{PCl}_{3}(\mathrm{~g})$
II. removing $\mathrm{PCl}_{3}(\mathrm{~g})$
III. reducing the volume of the container
IV. removing $\mathrm{PCl}_{5}(\mathrm{~g})$
V. increasing the temperature
VI. increasing the volume of the container
VII. adding $\mathrm{PCl}_{5}(\mathrm{~g})$
VIII. reducing the temperature
IX. adding a suitable catalyst
A) I, IV, V, VI
B) II, VI, VII, VIII
C) II, III, VII, VIII
D) II, V, VI, VII
E) II, VI, VII, VIII, IX
30) Consider a 1 gallon jug of water stored for Y2K emergency use. Assume the water level in the jug has not changed visibly over the 17 years of shelf life. Inside the jug:
I) there is zero evaporation or condensation taking place
II) the evaporation and condensation are taking place at equal rates
III) equilibrium has been reached
IV) evaporation and condensation are occurring but one will always be faster than the other
A) I
B) II, III
C) II, IV
D) I, III
E) I, II, III, IV

